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1 Introduction

Recent advances in observational cosmology [1–3] have revived interest in alternative theo-

ries of gravity in which the gravitational interaction is modified in the infrared domain and

which could — potentially — explain the accelerated expansion of the Universe without

introducing the dark energy and matter components. Theoretical consistency and exist-

ing experimental data impose severe constraints on such models. Different approaches to

the problem have been discussed in the literature (see, e.g., refs. [4–11], and refs. [12–14]

for reviews). One of them employs spontaneous breaking of Lorentz symmetry by space-

time dependent condensates of scalar fields [15, 16] coupled to gravity in a covariant way

via a derivative coupling. The resulting theory may have a non-pathological perturbative

behavior about the broken vacuum [16, 17] and exhibit modifications of gravitational inter-

actions at large scales (see section 2 for more details). In particular, graviton may acquire

a non-zero mass, which is the reason to call these models massive gravity models.

Existing experimental data constrain the mass of the graviton and other parameters

of massive gravity models. Absence of Lorentz invariance makes the constraints weaker

than one would expect in a Lorentz-invariant theory: the Newton’s potential remains

unmodified in the linear approximation despite non-zero graviton mass [18], so that Solar

system constraints are satisfied for rather large masses. The constraint on the mass of

the graviton comes from the emission of gravitational waves by binary pulsars which is

responsible for their spin-down [19]. Consistency of observations with GR requires the
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graviton mass to be smaller than the inverse period of orbital motion of the binary system,

that is [20]

m . 10−19 eV.

Standard cosmological solutions may be reproduced in massive gravity [18]. Further con-

straints on the parameters of the model are imposed by the growth of perturbations and

structure formation in the post-inflationary epoch [21].

In General Relativity (GR), a crucial role is played by the spherically symmetric vac-

uum solution to the Einstein equations — the Schwarzschild solution. This role is twofold:

First, this solution describes the metric outside of spherical non-rotating bodies and gives

rise, in the weak field limit, to the Newtonian gravity. It provides therefore a useful ap-

proximation in many astrophysical situations.

Second, the Schwarzschild solution describes the result of a gravitational collapse, the

black hole. Although the existence of black holes has not yet been directly confirmed,

there exists an indirect evidence that some of binary stellar systems contain black holes as

one of the companion [22, 23], and that many galaxies, including the Milky Way, harbor

super-massive black holes in their centers [24, 25]. It is conceivable that black holes will

be directly observed in the near future, and that their properties, including the metric

configuration near the horizon, will be quantitatively tested [26], thus providing a probe of

GR in a fully non-linear regime.

The Schwarzschild metric, together with properly arranged scalar fields is a solution

to Einstein equations in massive gravity as well [27]. However, the properties of black

holes are, in general, expected to be different. In particular, rotating black holes are

certainly modified, and, more generally, black holes are expected to have hair [27]. The

possible existence of black hole hair in massive gravity models suggests that there might

exist spherically symmetric solutions other than the Schwarzschild one. In this paper we

construct explicit examples of such solutions.

We found a new class of vacuum spherically-symmetric solutions in massive gravity

which depend, in addition to the mass M (equivalently, the Schwarzschild radius), on

one more parameter which we call the “scalar charge” S. At zero value of this param-

eter the standard Schwarzschild solution is recovered, while at non-zero values of S the

Schwarzschild metric gets modified. The modified solution is non-linear at all distances;

it cannot be obtained in the linear approximation. Similar non-linear solutions have been

found in the context of bi-gravity models [28]. The new solutions may have event horizons

and are, therefore, candidates for modified black holes. We found both analytical and

numerical examples of such modified black holes.

The analytical solutions found in a particular massive gravity model show a variety of

different behaviors. Depending on the parameters of the model, the deviation of the metric

from the Minkowski one may decay at infinity as 1/r or slower. The solutions thus may

have finite or infinite ADM [29] mass, respectively. In the case of a finite mass, this mass

may be positive or negative depending on the sign of M . In either case the singularity

at the origin may be hidden by the horizon. The solutions with negative mass exhibit an

anti-gravitating behavior at large distances from the center.
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The modified gravitational potential may decay slower than 1/r in a certain distance

range. Such a behavior would mimic the effect of the dark matter. Interestingly, the

modification depends not only on the parameters of the model, but also on the scalar

charge and the mass of the solution. Thus, the apparent amount of the “dark matter” may

be different for objects of the same mass, in contrast with other models of modified gravity.

This paper is organized as follows. In section 2 we briefly review the massive gravity

model and summarize previous results about the Newtonian potential in this model. In

section 3 we present the spherically symmetric ansatz and reduce the Einstein equations

to four ordinary differential equations. In section 4 we choose a particular model and find

analytical solutions to the Einstein equations in this model. In section 5 we demonstrate,

by numerical computation, that modified black hole solutions exist in more realistic mas-

sive gravity models which are attractors of the cosmological evolution. Finally, section 6

contains the summary and discussion of our results.

2 The massive gravity model

In this paper we consider the massive gravity model described by the following action [16],

S =

∫

dx4√−g
[

−M2
plR + Lm + Λ4F

]

. (2.1)

The first two terms are the curvature and the Lagrangian of the minimally coupled ordinary

matter; they comprise the standard GR action. The third term describes four scalar fields

φ0, φi whose space-time dependent vacuum expectation values break spontaneously the

Lorentz symmetry. These fields are minimally coupled to gravity through a derivative

coupling; they will be referred to as the Goldstone fields. We consider the functions F
which depend on two particular combinations of the derivatives of the Goldstone fields,

F = F
(

X,W ij
)

, where

X =
∂µφ0∂µφ

0

Λ4
,

W ij =
∂µφi∂µφ

j

Λ4
− ∂µφi∂µφ

0 ∂νφj∂νφ
0

Λ8X
.

The constant Λ has the dimension of mass. The model is understood as the low-energy

effective theory valid below the scale Λ.

The vacuum configuration has the form

gµν = ηµν , φ
0 = aΛ2t, φi = bΛ2xi, (2.2)

where a and b are two constants determined by the requirement that the energy-momentum

tensor associated with the four scalar fields vanishes in the Minkowski background. The

configuration (2.2) is, therefore, a solution to the Einstein equations. The constants a and

b may be set to one by the redefinition of fields, which we assume to be the case in what

follows.

For functions F which are invariant under rotations of the Goldstone fields φi in the

internal space (i.e., those depending on W ij through three combinations wn = TrW n, n =

– 3 –
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1, 2, 3), the background (2.2) preserves the rotational symmetry. The Lorentz symmetry

is, in general, broken.

The action of the Goldstone fields with functions F depending only on X and W ij is

invariant under the following symmetry,

φi → φi + χi
(

φ0
)

,

where χi are arbitrary functions of φ0. Because of this symmetry, the behavior of pertur-

bations about the vacuum (2.2) is non-pathological, i.e. there are neither ghost nor rapid

instabilities [16]. The spectrum consist of two tensor modes (graviton polarizations) only,

which are, in general, massive. The graviton mass scale is m ∼ Λ2/MPl.

During the cosmological evolution, the Universe described by the action (2.1) is driven

to an ”attractor“ point [18]

F
(

X,W ij
)

→ F
(

Zij
)

where Zij = XγW ij,

γ being a constant. At the attractor point the theory possesses an additional symmetry,

φ0 → λφ0, φi → λ−γφi. (2.3)

Models described by the action (2.1) with the function F = F
(

Zij
)

have been studied

more intensively [18, 21, 30]. In particular, it has been shown that for −1 < γ < 0 and

for γ = 1 the cosmological perturbations in these models behave identically to those in

GR [21]. For other values of γ the behavior of the perturbations may or may not reproduce

that of GR depending on the initial conditions.

Another reason to study models characterized by the function F = F
(

Zij
)

comes from

the analysis of Newtonian approximation. The gravitational potential of a static source in

the model (2.1), in the linear approximation, has the form [18]

Φ = MGN

(

−1

r
+ µ2r

)

,

whereGN =
(

8πM2
pl

)−1
is the Newton’s constant and µ is a constant of order of the graviton

mass whose value depends on the particular form of the function F . This constant vanishes

at the point where the symmetry (2.3) holds, that is, where F = F
(

Zij
)

. Thus, at the

point of the attractor the Newtonian potential remains unmodified.

It has been shown that the standard Schwarzschild metric is a solution to the Einstein

equations in massive gravity models possessing the symmetry (2.3) [27], with the scalar

fields given by

φ0 = Λ2

(

t+ 2
√
rrs + rs ln

√
r −√

rs√
r +

√
rs

)

,

φi = Λ2xi,

where rs is the Schwarzschild radius of the black hole. On the other hand, the metric of a

rotating black hole is necessarily modified [27] from its standard GR (Kerr) form.
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3 Static spherically symmetric ansatz and equations

A static spherically symmetric configuration in the massive gravity model (2.1) can be

written in the following form,

ds2 = α(r)dt2 + 2δ(r)dtdr − β(r)dr2 − κ(r)dΩ2,

φ0 = Λ2 [t+ h (r)] ,

φi = φ (r)
Λ2xi

r
.

This field configuration is invariant under two residual coordinate transformations. The

first one is an arbitrary change of the radial coordinate r → r′ = r′ (r), which allows

to set either κ = r2 or φ = r. The second one consist in redefining the time variable

t → t′ = t+ τ (r). This last transformation allows to cancel either δ (r) or h (r). We choose

the conditions κ = r2 and δ = 0. Thus, we get the following ansatz,

ds2 = α(r)dt2 − β(r)dr2 − r2
(

dθ2 + sin2 θdϕ2
)

,

φ0 = Λ2 [t+ h (r)] ,

φi = φ (r)
Λ2xi

r
. (3.1)

As compared to GR, this configuration contains two additional radial functionsh(r) andφ(r).

As has been pointed out in section 2, the rotational invariance of the vacuum (and

likewise, of the ansatz (3.1)) requires that the function F depends on W ij through three

combinations wn = Tr(W n). These combinations are expressed in terms of the radial

functions and their derivatives as follows,

w1 = − (f1 + 2f2) ,

w2 = f2
1 + 2f2

2 ,

w3 = −
(

f3
1 + 2f3

2

)

,

where the two functions f1 and f2 are

f1 =
φ′2

αβX
, f2 =

φ2

r2
,

and

X =
β − αh′2

αβ
.

In these expressions and in what follows, the prime denotes the derivative with respect to

the radial coordinate r.

After fixing the ansatz (3.1), the Einstein equations reduce to the following four equa-

tions:

G0
0 =

1

M2
pl

T 0
0 , Gr

r =
1

M2
pl

T r
r ,

Gθ
θ =

1

M2
pl

T θ
θ , 0 = T r

0 ,
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where Gµν is the Einstein tensor and T ν
µ is the energy-momentum tensor of the four Gold-

stone fields. The other six equations are identically satisfied. The explicit expressions for

the components of Gν
µ and T ν

µ are given in the appendix.

Consider first the equation T r
0 = 0. Assuming h′ 6= 0, this equation gives

0 = XFX + f1

(

F1 − 2f1F2 + 3f2
1F3

)

, (3.2)

where FX ≡ ∂F/∂X and Fi ≡ ∂F/∂wi. Furthermore, the time and radial components of

the energy-momentum tensor differ by the quantity proportional to eq. (3.2). Therefore,

when this equation holds one has T 0
0 = T r

r . This implies that G0
0 = Gr

r or, equivalently,

α (r)β (r) = 1,

in full analogy with the Schwarzschild solution in GR. Hence, the Einstein equations reduce

to the following four equations,

1 = αβ, (3.3)

0 =
α′

r
+
α− 1

r2
− m2

2
(F − 2XFX) , (3.4)

0 =
α′

r
+
α′′

2
− m2

2
[F +XFX − w1F1 − 2w2F2 − 3w3F3] , (3.5)

0 = XFX + f1

(

F1 − 2f1F2 + 3f2
1F3

)

, (3.6)

where m2 = Λ4/M2
pl. For a generic function F , this system of equations is well defined.

Indeed, since the function h(r) enters the equations (3.3)–(3.6) only through the variableX,

one may consider X as an independent variable instead of h(r). Then the fourth equation

allows to find φ in terms of X, while the first equation gives β in terms of α. The second

equation then gives X in terms of α and the third equation allows to determine α as a

function of r.

4 Analytical example

Finding analytical solutions of the non-linear system of equations like (3.3)–(3.6) is im-

possible for a generic function F . So, in order to get some insight into the behavior of

the solutions, let us choose the function F in such a way that the resulting equations are

solvable analytically.

Consider the function F of the following form,

F = c0

(

1

X
+ w1

)

(4.1)

+c1
(

w3
1 − 3w1w2 − 6w1 + 2w3 − 12

)

,

where c0 is an arbitrary dimensionless constant and c1 = ±1 (the numerical value of c1
can be absorbed into the constant Λ). The coefficients inside the parentheses are chosen

in such a way that the vacuum (2.2) is the solution to the Einstein equations at a = b = 1.

Our example contains, therefore, a single continuous free parameter c0. Two additional

– 6 –
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constraints should be imposed on c0. The first one comes from the requirement that the

graviton is non-tachyonic. This translates into the inequality

c0 − 6c1 ≥ 0. (4.2)

The second condition is necessary to ensure that scalar modes with pathological behavior

do not reappear upon addition of higher-derivative terms (recall that the model (2.1) is

understood as the low-energy effective theory, so such terms are generically present). This

imposes certain constraint on the function F and its derivatives (cf. eq. (70) of ref. [16]),

which in the case at hand implies

c0 > 0. (4.3)

We should stress that the choice of the functional form of F is by no means unique.

The particular form (4.1) has been chosen in order to simplify the solution of the field

equations, as will become clear below.

4.1 The static spherically symmetric solution

Let us start with eq. (3.6) which takes the form

0 =
1

X

[

−c0 + φ′2
(

6c1
φ4

r4
+ c0 − 6c1

)]

.

Because of our choice of the function F , this equation contains the variable X as an overall

factor only. Hence, it reduces to a closed differential equation for φ. The solution to this

equation is

φ = br,

where the constant b satisfies the equation

0 = (b2 − 1)(6b4 + 6b2 + c0/c1). (4.4)

We are interested in real positive values of b (the case b < 0 can be reduced to b > 0 by

the inversion of coordinates). If c0/c1 > 0 there is only one such solution,

b = 1.

If c0/c1 < 0 there exists another one,

b =
1√
2

(

−1 +
√

1 − 2c0/3c1

)1/2

.

Thus, at negative c0/c1 we have two different branches of solutions.

The remaining equations (3.4) and (3.5) can be written as follows,

0 =
α′

r
+
α− 1

r2
− 3Λc +m2c0

(

1 − 1

X

)

,

0 = α′′ + λ
α− 1

r2
+

(

α′

r
− 3Λc

)

(2 + λ) , (4.5)
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where

λ = −12b6
c1
c0
,

Λc = 2m2c1(b
6 − 1).

Recall that, according to our normalization, the constant c1 only takes two values, c1 = ±1.

Eq. (4.5) is a linear inhomogeneous equation for α. Its general solution can be found

analytically. Making use of this solution and integrating the remaining equations one finally

obtains:

α (r) = 1 − rs
r

− S

rλ
+ Λcr

2, (4.6)

β (r) = 1/α(r),

h (r) = ±
∫

dr

α

[

1 − α

(

S

c0m2

λ− 1

rλ+2
+ 1

)−1
]1/2

,

φ (r) = br.

Here rs and S are two integration constants: rs is the Schwarzschild radius, while S is a

scalar charge whose presence reflects the modification of the gravitational interaction as

compared to GR. At S = 0 the solution (4.6) reduces to the conventional Schwarzschild

solution describing a black hole of the mass M = rs/(2GN ).

The behavior of the metric at r → ∞ depends on the constants c0 and c1 = ±1. If

c1 = 1, we must also take c0 ≥ 6, and the only solution of eq. (4.4) in this case is b = 1.

Hence, we have Λc = 0, λ < 0, and the metric is growing at infinity as Sr|λ|. Such solutions

do not describe asymptotically flat space.

If c1 = −1, we must take c0 > 0 in order to satisfy eqs. (4.2) and (4.3). In this case

λ > 0. Two branches of solutions exist, one with zero, and one with non-zero cosmological

constant, which can be positive or negative depending on the numerical value of c0. In

what follows we consider the branch with Λc = 0 (b = 1).

The behavior of the solutions is determined by the two integration constants M and

S, and the value of the parameter λ. If λ < 1, the third term on the r.h.s. of eq. (4.6)

dominates at large distances. The ADM mass of these solutions is infinite. We do not

discuss them further here.

If λ > 1, the standard Schwarzschild term dominates at infinity. The ADM mass of

such solutions is equal to M . The solutions with positive (negative) M have attractive

(repulsive) behavior at infinity.

At the origin r = 0 both terms proportional to M and S are singular, so the metric

always possesses a singularity unless M = S = 0. This singularity may or may not be

hidden by the horizon depending on the signs and values of M and S. The solutions

possessing the horizon are candidates for modified black holes.

The horizon is always present if both M and S are positive. Such black holes have

attractive gravitational potential at all distances, which is stronger than for a conventional

black hole of the mass M . The horizon size of the modified black hole is larger than

rs = 2GNM .

– 8 –
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g   −1
00 g   −1

00
g   −1

00

r0

−1

r

(b)

0

−1

rH r0

−1

(a) (c)

Figure 1. The deviation of g00 from one (proportional to the Newtonian potential Φ = (g00−1)/2)

for tree different choices of the integration constants. Figures (a) and (b) correspond to M > 0 and

S < 0 with the numerical values satisfying (a) and not satisfying (b) eq. (4.7). Figure (c) represents

solution with M < 0 and S > 0.

IfM > 0 and S < 0, the presence of the horizon depends on the relative values of S and

M . It exists for sufficiently small S. Defining, on dimensional grounds, the mass parameter

s associated with S by the relation |S| = s−λ, the existence of horizon requires that

sM ≥ λ

2GN

(

1

λ− 1

)

λ− 1

λ . (4.7)

The Newtonian potentials for solutions satisfying and not satisfying the condition (4.7) are

shown in figure 1–(a) and (b), respectively. When the horizon exists, the gravitational field

is attractive all the way to the horizon. The attraction is weaker than in the case of the

usual Schwarzschild black hole of mass M , and the horizon size is smaller. The behavior

of the gravitational force with distance mimics that of the smaller-mass black hole plus a

continuous distribution of “dark matter”, with the total mass enclosed within the radius r

approaching M as r → ∞.

Finally, at M < 0 and S > 0 the modified black hole anti-gravitates at large distances

and gravitates close to the horizon. The attraction changes to repulsion at

r = r∗ ≡
∣

∣

∣

∣

λS

rs

∣

∣

∣

∣

1

λ− 1 .

The corresponding Newtonian potential is shown in figure 1–(c).

A remark is in order at this point. In the conventional general relativity the constant

rs or equivalently, the black hole mass M , is also a free parameter which can, in principle,

be positive or negative. In GR, however, only positive values make sense for the following

reasons. First, negative-mass Schwarzschild solutions possess naked singularity at the

origin, which is physically unacceptable. Second, the conventional matter satisfies the null

energy condition which ensures that any compact spherically-symmetric matter distribution

has a positive mass [31]. None of these arguments go through in the case of massive gravity.

Figure 1–(c) gives an example of solution with repulsive behavior at large distances and

– 9 –



J
H
E
P
0
4
(
2
0
0
9
)
1
0
0

without naked singularity: as for a conventional black hole, the singularity of this solution is

hidden behind the horizon. The positivity of energy is also not expected in massive gravity.

This is related to the fact that the background (2.2) breaks time translations, and only the

combination of the time translations with the shifts of φ0 by a constant remains unbroken.

In this respect the massive gravity model is exactly analogous to the ghost condensate

model [15], where the negative-energy states have been constructed explicitely [32].

4.2 Correspondence with linear analysis

The solutions found in the previous section have the asymptotic behavior different from

that obtained in the linear perturbation theory in ref. [20]. In order to compare our results

with those of ref. [20], let us discuss them in the gauge where h(r) = 0, δ(r) 6= 0 (cf.

section 3). In this gauge the perturbation theory of ref. [20] corresponds to assuming that

the variations of all the metric components are of the same order. In other words, they

are formally assigned a small parameter ǫ to the first power. The solutions described in

ref. [20] satisfy the Einstein equations expanded to the linear order in ǫ.

The solution (4.6) is not of this type. Transforming it into the gauge h(r) = 0 one

finds that gtr = δ(r) does not decay as fast as the perturbations of other components,

for instance, as α − 1. In fact, in the equations expanded in powers of perturbations the

terms of order δ2 balance those linear in α − 1. In other words, in the formal expansion

of the solution of section 4 in powers of the small parameter ǫ the perturbation δ should

be assigned the order
√
ǫ rather than ǫ. Hence, the solution (4.6) is non-linear even at

large distances from the center. A similar phenomenon has been observed in the context

of bi-gravity models in ref. [28].

Another difference between the solution (4.6) and the solution to the linearized equa-

tions of ref. [20] is that the former is static, while in the latter only metric components are

static (in the gauge g0i = 0). The scalar fields have time dependence which may be viewed

as an accretion of a fluid with zero energy-momentum tensor.

4.3 Gravitational field of a star

In general relativity, one may relate the mass of a star to an integration constant of the

vacuum solution in the exterior space by matching the interior and exterior solutions at the

star surface (see, e.g., ref. [33]). In massive gravity, one may try to use the same approach

to determine the scalar charge of an ordinary star. The analytical solution in the interior

region is required for the matching procedure.

The star is described, to a good approximation, by a diagonal energy-momentum tensor

tνµ = (ρ,−p,−p,−p), where ρ and p are the energy density and pressure inside the star,

respectively. This energy-momentum tensor is assumed to be responsible for the external

gravitational field described by eq. (4.6). Since there is no direct coupling between the

ordinary matter and the Goldstone fields, tνµ must be conserved separately, ∇µtνµ = 0.

For simplicity, we take the energy density to be constant at r < R, where r = R is the

surface of the star, and zero outside. The pressure p cannot be chosen independently; it is

determined by the conservation of tνµ.

– 10 –
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Because of the spherical symmetry, the ansatz (3.1) holds. The Einstein equations in

the interior of the star are obtained from eqs. (3.3)–(3.5) by adding the contributions of

the energy-momentum of the star, while eq. (3.6) remains unchanged. The resulting set of

equations can be solved analytically. The solution reads

α (r) = 1 − s1
r

− s2
rλ

+ Λcr
2 +

ρ

M2
pl

(

r2

6
− R2

2

)

+ O
(

ρ2
)

,

β (r) =

[

1 − s1
r

− s2
rλ

+ Λcr
2 − r2ρ

3M2
pl

]−1

,

h (r) = ±
∫

dr

α

[

1 − α

(

s2
c0m2

λ− 1

rλ+2
+ 1

)−1
]1/2

,

φ (r) = br.

For simplicity, we have expanded the first equation in powers of ρ, while the other relations

are exact. Since the geometry inside the star is regular, the integration constants s1 and

s2 must be set to zero.

The interior solution has to be matched with the solution (4.6) at r = R. It is

convenient to match the variable X which equals 1 in the interior region. In the gauge

h(r) = 0 this variable is nothing but the g00 component of the metric. Hence, it must be

continuous. Making use of eqs. (4.6) one can see that the continuity of X at r = R requires

that S = 0. Therefore, the scalar charge of an ordinary star is zero.

It remains an open question how objects (e.g., black holes) with S 6= 0 can be created.

The argument given above does not apply to time-dependent configurations, so it is possible

that a non-zero scalar charge may be acquired during the gravitational collapse.

5 F(Zij) models

As mentioned earlier, models characterized by the function F of a single variable Zij =

XγW ij are of a particular interest. We discuss in this section the exact static spherically

symmetric solutions in these models. Our goal is to demonstrate that the solutions found

earlier are not specific to the particular form of the action (4.1) and exist also in the models

obeying the symmetry (2.3).

In section 4 the analytical solutions of eqs. (3.3)–(3.6) were obtained by choosing the

function F in such a way that the dependence on X factors out in eq. (3.6). Since now

F has only one argument, the derivatives of F with respect to X and W ij are no more

independent. For this reason we did not succeed in constructing non-trivial examples where

the Einstein equations are solvable analytically. Hence, to demonstrate the existence of

solutions we have to use numerical methods.

Consider the following function F ,

F = c0

(

z1 + 2 +
z3
1 − 6z1z2 + 8z3

3

)

(5.1)

+2c1

(

z2
1 − 2z2 − 1 − 2

z3
1 − 6z1z2 + 8z3

3

)

,
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-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

g00 - 1
r

Schwarzschild Solution

c0 = - 1, c1 = - 1, Γ = -1, m = 0.001

c0 = 3, c1 = 1 , Γ = -1, m = 0.001

Figure 2. The deviation of g00 from one for three different cases: the usual Schwarzschild solution

(solid line) and two solutions corresponding to different values of the parameters of the function (5.1)

(long-dashed and short-dashed lines). The integration constants of these solutions have been chosen

such that the external horizon is located at r = 1.

were zn = Tr (Zn) are tree independent scalars made out of Zij, zn = (Xγ)nwn. The

coefficients in front of individual terms have been adjusted so that the flat metric and

the scalar fields given by eq. (2.2) solve the field equations at a = b = 1. For the vacuum

configuration (2.2) one has Zij = −δij . We are interested in solutions to the field equations

that asymptote to this vacuum state.

In addition to the adjustments already made, the following inequality should be im-

posed on the coefficients c0 and c1 to ensure that the graviton is non-tachyonic,

c0 − 2c1 ≥ 0. (5.2)

This guarantees that the square of the graviton mass is non-negative. Moreover, this

inequality is sufficient for the absence of pathological scalar modes which may appear upon

addition of higher-derivative terms. As in the previous example, the overall scale of the

coefficients c0 and c1 can be absorbed in the parameter Λ, so without loss of generality we

may set c1 = ±1.

For this class of models, the field equations (3.3)–(3.6) may be viewed as equations for

α(r), β(r), ξ(r) ≡ Xγf1 − 1 and ψ(r) ≡ Xγf2 − 1. Then eq. (3.3) gives β in terms of α,

while eq. (3.6) enables to express ψ in terms of ξ. The two remaining equations form a

coupled set of non-linear equations for α and ξ; they have to be solved numerically.

The numerical solutions are shown in figure 2 for different value of the parameters

c0 and c1. For all these graphs, we have assumed that the external horizon is located at

r = 1 and that ξ = 100 at the horizon. The large value of ξ is chosen in order to make the

difference between the modified solution and the Schwarzschild solution visible on the plot

(large values of ξ correspond to large scalar charge S of the previous section).
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The plots show the behavior qualitatively similar to that discussed in section 4. In

particular:

• if c0 = c1 = −1, the Newtonian potential 2Φ = α− 1 is attractive at short distances

and becomes repulsive at larger distances;

• if c0 = 3 and c1 = 1, the Newtonian potential is attractive outside of the horizon,

and becomes repulsive close to the singularity.

The deviations from the Schwarzschild metric are larger for larger values of the “scalar

charge” (parameterized by the value of ξ at the horizon). The Schwarzschild solution is

recovered at ξ → 0.

6 Discussion

To summarize, there exist spherically symmetric vacuum solutions in massive gravity mod-

els which depend on two integration constants, the mass M and an extra parameter S

which can be called the “scalar charge”. At zero value of the scalar charge the standard

Schwarzschild solution is recovered, while at non-zero S the metric is modified with respect

to the Schwarzschild case.

The solutions having non-zero scalar charge exhibit much reacher behavior than the

Schwarzschild solution in GR. As can be seen from the explicit example of section 4, both

the short and long distance behavior may be modified depending on the parameters of

the model.

Unlike in General Relativity, the solutions may have a negative ADM mass. Such

solutions have repulsive gravitational interaction at large distances. At short distances the

repulsion may change to attraction and give rise to the horizon, hiding the singularity at

the origin. Such solutions represent anti-gravitating black holes.

In the case of a positive ADM mass, the S-dependent contributions may make the

gravitational attraction weaker at short distances (cf. figure 1-(a)). In this case the gravi-

tational force decays with distance slower than 1/r2, thus mimicking the presence of dark

matter. Interestingly, solutions with the same value of M but different scalar charge S

have different behavior, which corresponds to different amount of the apparent “dark mat-

ter”. This is in contrast with other models possessing modifications of the gravitational

potential [4, 6, 10], where the modification of the gravitational force is determined by the

parameters of the model.

It is currently an open question how objects with non-zero scalar charge may be created.

As has been argued in section 4.3, the absence of direct coupling between the Goldstone

fields and ordinary matter results in zero scalar charges of static matter distributions.

Thus, the gravitational field of ordinary stars is described by the S = 0 solutions, i.e., by

the standard Schwarzschild metric. This may be not the case for black holes, especially the

super-massive black holes in the centers of galaxies, which may be of primordial origin [34,

35]. In any case, this question requires further investigation.

Another open question is the stability of the modified black hole solutions. Several

kinds of instabilities may be present. Among perturbations of the solutions there may exist
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unstable modes with the characteristic time scale of order of the horizon size; in this case the

interpretation in terms of black holes is not possible. Second potential source of problems

is generic presence of the higher-derivative terms not included in the action (2.1). One

has to check that the 2-parameter family of modified black holes survives their inclusion.

By analogy with the ghost condensate case, one may expect that these terms produce at

least a slow Jeans-type instability [15], which is not, however, dangerous for the black hole

interpretation. Finally, the presence of negative mass solutions may lead to instabilities of

the quantum-mechanical nature similar to those found in ref. [36].

To conclude this list, let us mention also the solutions satisfying h = 0 which were not

considered in this paper. In this case the ten Einstein equations reduce to three equations

for α, β and φ which form a (generically) well-defined system. It remains to be seen whether

this system has asymptotically flat solutions. In any case, the Schwarzschild solution does

not belong to this class which is characterized by αβ 6= 1.
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l’Industrie et dans l’Agriculture (FRIA). The work of P.T. is supported by IISN, Belgian

Science Policy (under contract IAP V/27).

A Details of the equations of motions

For the ansatz (3.1) discussed in section 3, the non-zero components of the Einstein tensor

are given by the following relations

G0
0 =

1

r2

[

1 −
(

r

β

)′]

,

Gr
r =

1

r2

(

1 − α+ rα′

αβ

)

,

Gθ
θ = Gϕ

ϕ = − 1

4r

[

α′ + rα′′

αβ
+

(

2α+ rα′

αβ

)′]

.

The energy-momentum tensor of the Goldstone fields is expressed through

T ν
µ = −1

2
Λ4δν

µF + FX∂
νφ0∂µφ

0

+
∂F
∂W ij

[

∂νφi∂µφ
j +

V iV j

X2
∂νφ0∂µφ

0 − V j

X

(

∂νφi∂µφ
0 + ∂νφ0∂µφ

i
)

]

,

where FX ≡ ∂F/∂X and

V i =
∂µφ0∂µφ

i

Λ4
.
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For functions F which are invariant under rotations of the Goldstone fields φi internal

space, the derivatives of F with respect to W ij are given by

∂F
∂W ij

= F1δij + 2F2W
ij + 3F3W

ikW kj,

where Fi ≡ ∂F/∂wi. Therefore, the components of the energy-momentum tensor which

are not identically zero are given by

T 0
0 = Λ4

[

−1

2
F +

1

α

(

FX +
∂F
∂W ij

V iV j

X2

)]

,

T r
r = Λ4

[

−1

2
F −

(

FX +
∂F
∂W ij

V iV j

X2

)

h′2

β

]

+
1

β

∂F
∂W ij

(

−∂rφ
i∂rφ

j+
2V j

X
∂rφ

i∂rφ
0

)

,

T θ
θ = T ϕ

ϕ = −1

2
Λ4F +

∂F
∂W ij

∂θφi∂θφ
j ,

T r
0 = −Λ4h′

β

[

FX +
∂F
∂W ij

(

V iV j

X2
+
∂rφ

i∂rφ
j

βΛ4X

)]

.
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